Bearing Fault Identification Using Machine Learning and Adaptive Cascade Fault Observer
نویسندگان
چکیده
منابع مشابه
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملa robust adaptive observer-based time varying fault estimation
this paper presents a new observer design methodology for a time varying actuator fault estimation. a new linear matrix inequality (lmi) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (fafe). the fafe is capable of estimating a wide range of time-varying actuator fault...
متن کاملStator Core Fault Diagnosis in Induction Motor Using Adaptive Observer
This document presents a method of on-line fault diagnosis for iron core of induction motor stator based on adaptive observer. Due to the equivalent resistance is directly affected by the stator core fault, while the iron loss is considered in the series iron loss model of the induction motor, so we can determine the core fault state by identifying equivalent iron consumption resistance. In thi...
متن کاملData-Driven Adaptive Observer for Fault Diagnosis
This paper presents an approach for data-driven design of fault diagnosis system. The proposed fault diagnosis scheme consists of an adaptive residual generator and a bank of isolation observers, whose parameters are directly identified from the process data without identification of complete process model. To deal with normal variations in the process, the parameters of residual generator are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2020
ISSN: 2076-3417
DOI: 10.3390/app10175827